Transformers have been essential to pretraining success in NLP. Other architectures have been used, but require attention layers to match benchmark accuracy. This work explores pretraining without attention. We test recently developed routing layers based on state-space models (SSM) and model architectures based on multiplicative gating. Used together these modeling choices have a large impact on pretraining accuracy. Empirically the proposed Bidirectional Gated SSM (BiGS) replicates BERT pretraining results without attention and can be extended to long-form pretraining of 4096 tokens without approximation.
translated by 谷歌翻译
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
translated by 谷歌翻译
Existing approaches for vision-and-language navigation (VLN) are mainly based on cross-modal reasoning over discrete views. However, this scheme may hamper an agent's spatial and numerical reasoning because of incomplete objects within a single view and duplicate observations across views. A potential solution is mapping discrete views into a unified birds's-eye view, which can aggregate partial and duplicate observations. Existing metric maps could achieve this goal, but they suffer from less expressive semantics (e.g. usually predefined labels) and limited map size, which weakens an agent's language grounding and long-term planning ability. Inspired by the robotics community, we introduce hybrid topo-metric maps into VLN, where a topological map is used for long-term planning and a metric map for short-term reasoning. Beyond mapping with more expressive deep features, we further design a pre-training framework via the hybrid map to learn language-informed map representations, which enhances cross-modal grounding and facilitates the final language-guided navigation goal. Extensive experiments demonstrate the effectiveness of the map-based route for VLN, and the proposed method sets the new state-of-the-art on three VLN benchmarks.
translated by 谷歌翻译
We propose eXtensible Prompt (X-Prompt) for prompting a large language model (LLM) beyond natural language (NL). X-Prompt instructs an LLM with not only NL but also an extensible vocabulary of imaginary words that are introduced to help represent what NL words hardly describe, allowing a prompt to be more descriptive. Like NL prompts, X-Prompt is out-of-distribution (OOD) robust, for which we propose context-guided learning with prompt augmentation to learn its imaginary words for general usability, enabling them to use in different prompt contexts for fine-grain specifications. The promising results of X-Prompt demonstrate its potential of approaching advanced interaction between humans and LLMs to bridge their communication gap.
translated by 谷歌翻译
Clustering has been extensively studied in centralized settings, but relatively unexplored in federated ones that data are distributed among multiple clients and can only be kept local at the clients. The necessity to invest more resources in improving federated clustering methods is twofold: 1) The performance of supervised federated learning models can benefit from clustering. 2) It is non-trivial to extend centralized ones to perform federated clustering tasks. In centralized settings, various deep clustering methods that perform dimensionality reduction and clustering jointly have achieved great success. To obtain high-quality cluster information, it is natural but non-trivial to extend these methods to federated settings. For this purpose, we propose a simple but effective federated deep clustering method. It requires only one communication round between the central server and clients, can run asynchronously, and can handle device failures. Moreover, although most studies have highlighted adverse effects of the non-independent and identically distributed (non-IID) data across clients, experimental results indicate that the proposed method can significantly benefit from this scenario.
translated by 谷歌翻译
Aspect-based sentiment analysis (ABSA) aims at extracting opinionated aspect terms in review texts and determining their sentiment polarities, which is widely studied in both academia and industry. As a fine-grained classification task, the annotation cost is extremely high. Domain adaptation is a popular solution to alleviate the data deficiency issue in new domains by transferring common knowledge across domains. Most cross-domain ABSA studies are based on structure correspondence learning (SCL), and use pivot features to construct auxiliary tasks for narrowing down the gap between domains. However, their pivot-based auxiliary tasks can only transfer knowledge of aspect terms but not sentiment, limiting the performance of existing models. In this work, we propose a novel Syntax-guided Domain Adaptation Model, named SDAM, for more effective cross-domain ABSA. SDAM exploits syntactic structure similarities for building pseudo training instances, during which aspect terms of target domain are explicitly related to sentiment polarities. Besides, we propose a syntax-based BERT mask language model for further capturing domain-invariant features. Finally, to alleviate the sentiment inconsistency issue in multi-gram aspect terms, we introduce a span-based joint aspect term and sentiment analysis module into the cross-domain End2End ABSA. Experiments on five benchmark datasets show that our model consistently outperforms the state-of-the-art baselines with respect to Micro-F1 metric for the cross-domain End2End ABSA task.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
最近的工作表明,大型审慎的语言模型(LMS)不仅可以在一系列自然语言处理(NLP)任务上表现出色,而且还可以开始改进推理任务,例如算术诱导,象征性操纵,并随着规模的增加而进行常识性推理。模型。但是,目前尚不清楚这些LMS的潜在能力是什么。令人惊讶的是,我们发现这些模型对某些基本的符号操纵任务有局限性,例如复制,反向和加法。当符号总数或重复符号增加时,模型性能会迅速下降。我们研究了这种现象背后的潜在原因,并检查了一组可能的方法,包括明确的位置标记,细粒度的计算步骤以及具有可呼出程序的LMS。实验结果表明,这些技术都无法完全解决最简单的添加感应问题。最后,我们向导师介绍LMS,这展示了每一个教学的步骤。 LMS带有导师的LMS能够在OOD和重复符号的情况下提供100%的精度,从而在诱导中对大型LMS边界产生新的见解。
translated by 谷歌翻译
高信心重叠的预测和准确的对应关系对于以部分到派对方式对齐成对点云至关重要。但是,重叠区域和非重叠区域之间存在固有的不确定性,这些区域一直被忽略并显着影响注册绩效。除了当前的智慧之外,我们提出了一种新颖的不确定性意识到的重叠预测网络,称为Utopic,以解决模棱两可的重叠预测问题。据我们所知,这是第一个明确引入重叠不确定性以指向云注册的人。此外,我们诱导特征提取器通过完成解码器隐式感知形状知识,并为变压器提供几何关系嵌入,以获得转换 - 不变性的几何形状感知特征表示。凭借更可靠的重叠得分和更精确的密度对应关系的优点,即使对于有限的重叠区域的输入,乌托邦也可以实现稳定而准确的注册结果。关于合成和实际基准的广泛定量和定性实验证明了我们的方法优于最先进的方法。代码可从https://github.com/zhileichen99/utopic获得。
translated by 谷歌翻译